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Abstract 
The methods of parametric information theory are used to study the minimal variance 

boundaries of polarization parameters estimates of partially polarized quasi-monochromatic 
radiation in a polarimetric scheme with an analyzer and a phase compensator under condi-
tions of additive-multiplicative normal noise. The density distributions of information on the 
Stokes parameters in the coordinates of the angle of rotation of the analyzer and the phase 
shift of the compensator are shown. The analysis of these distributions allows finding the 
most favorable measurement plans in metrological relation. Matrix variance boundaries of 
different polarization parameters for the uniform plan and other measurement plans are cal-
culated. The error limits of the estimates of the degree of polarization are calculated. The re-
sults of the analysis are confirmed by numerical simulation. The patterns of the distributions 
of the variance bound estimates of the degree of polarization on the Poincare sphere are giv-
en. With the help of the developed technique based on the parametric information theory, it 
is possible to study estimates of any polarization parameters: azimuth, ellipticity and others. 
The results of this study can be used to optimize signal processing algorithms and improve 
the efficiency of optoelectronic devices and systems of a wide profile.  
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1. Introduction 
The use of polarization devices in laser technology, in optical devices and systems makes 

the problem of precision measurement of the polarization characteristics of radiation rele-
vant. There are different ways of measuring the polarization state [1]. The set of devices real-
izing them is invented. In [2-3] metrological features of polarization measurements planning 
in conditions of additive noise are considered. In this paper we generalize the results to the 
case of additive-multiplicative normal noise. The polarization state of a quasi-monochromatic 
wave can be specified in different ways. In many cases, it is convenient to use Stokes parame-
ters that have the same dimension, real values, and have a visual interpretation of the coordi-
nates of the point on the Poincare sphere [1]. Stokes parameters are also used in crystallog-
raphy and quantum physics. 

2. Basic relations 
Analysis of polarization measurements can be performed using a registration scheme 

with a polarizer and a phase compensator, in which it is possible to scan the angle of rotation 

of the polarizer  and the phase delay  introduced by the compensator. The input receives 
the analyzed radiation, the intensity of the transmitted wave is measured on the output. The 
parametric model of the problem is the functional dependence of the output value on the fac-

tors  and the required Stokes parameters of the input radiation. This model is given in [2] 
and has the form 
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Formula (1) defines a 2-factor 4-parametric model. Factors: the rotation angle of the 

analyzer, the phase shift specified by the compensator. The parameters of the model are 
the Stokes parameters indicated by the vector s=(s0, s1, s2, s3). 

The visual interpretation of the Stokes parameters of fully polarized radiation is related 
to the use of the Poincare sphere [1]. For partially polarized radiation, the Poincare sphere 
can be conventionally represented as shown in Fig.1. 

 

 

Fig. 1. Poincare sphere for partially polarized radiation. 
P is the degree of polarization; s=(s0, s1, s2, s3) is the vector  

of Stokes parameters. 
 
The position of the point M characterizes the polarization state of the polarized compo-

nent. Angle 2 longitude and  latitude of the point M. From the point of view of the 

shape and orientation of the polarization ellipse angle  is the angle of inclination of the ma-

jor axis of the ellipse to the x-axis, and tan(is equal to the ratio of the minor and major axis. 
Thus, the States with linear polarization are located at the equator, and the States with right 
and left circular polarization are located at the North and South poles of the Poincare sphere. 
From Fig.1 you can see that 
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According to the Rаo-Kramer theorem [4], there is a lower boundary for the variance 
matrix of model parameter estimates. It determines the theoretical limit accuracy of the joint 
estimation of parameters, potentially achievable with a given statistics of measurement errors 
if one uses all information obtained from the experiment. Variance matrix boundary can be 
found as the inverse of the information matrix . As follows from the formulas given in [2], 

when measured at arbitrary points with coordinates (k,l,) (k=0,1,…m; l=0,1,…n) elements of 
the information matrix can be represented as 

    



















1

0

1

0 ,

);,();,(
1m

k

n

l
lk

j
lk

ilk
ij I

s
I

sD
IM ss ,         (3) 

 



where Dk,l characterizes the noise power. For additive-multiplicative noise with Dk,l nor-
malization selected in [2], can be represented as 
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where  is the degree of multiplicativity of noise or the ratio of the power of the multiplica-
tive component of noise to the total power of noise. 

Formulas (3,4) allow to calculate the information matrix for any set of points in the 
plane ),(  . Next, we evaluate the normalized matrices fitted to the unit total time of meas-

urement T and the unit intensity (s0=1) of the analyzed radiation at the input of the measur-

ing scheme. With a uniform distribution of measurement points on and  such that 

1,...,0,/;1,...,0,/  nlnlmkmk lk  , 2,3  nm , the elements of the normalized in-

formation matrix of the estimates of the Stokes parameters IN can be represented in the form 
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At the unlimited magnification of n and m we come to the integral expression 
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3. Information density 
The integrand function in (6) can be considered as the density of information for Stokes 

parameters in the plane ),(  : 
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Examples of visualization of density distributions of information in the form of maps 
with a topographic color scale are shown in figure 2. Information density values ws are nor-
malized by the sum of the minimum and maximum ws values for this map, the intensity at 
the input of the measuring system is reduced to unit (s0=1). The color scale is shown in figure 
3. 

Figure 4 shows a series of information density maps for the Stokes parameters for a 

range of values of noise multiplicativity Format of axis corresponds to the format of the ax-
is in figure 2. 

 
a) 

 
 

b) 

 

Fig. 2. The density of information ws0,0(). Uniform plan:  

а) P=1; b) P=0.5.a) P=1; b) P=0.5. 
 



 
Fig. 3. Color scale. 

 

ws0,0() 

 
ws1,1()

 
ws2,2() 

 
ws3,3() 

 
                   

Fig. 4. Information density distribution for the Stokes parameters in the plane (

. 
 
Analysis of distributions (Fig.4) allows one to find the best measuring plans in the met-

rological respect, that is to determine the coordinates and the number of measurement points 

in the plane  that will ensure maximum accuracy of the estimates of the Stokes parame-
ters for the given parameters of the noise. Thus, for example, in [3], a justification was given 
for the 6-point optimal plan (presented in table 1 below) for the case of the additive normal 
noise. 

4. Visualization of vairiance boundaries  
The normalized dispersion matrix boundary of the Stokes parameter estimates is de-

fined as the inverse of the normalized information matrix IN (5): 
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Any polarization parameter can be expressed as a function of Stokes parameters 
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For the normalized minimum variance of the parameter p estimate from (8) and (9) it 
follows 
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In this paper, we analyze the variance boundaries of the degree of polarization estimate 
P, a parameter of partially polarized radiation, which is expressed in terms of Stokes parame-
ters as follows: 
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Taking into account (2) and using the ratio (5, 8-11) we can get a visual picture of the 
variance bounderies of the estimate distributions of the degree of polarization on the Poin-
care sphere in Cartesian rectangular coordinates, where the abscissa corresponds to the lon-

gitude , and the ordinate to the latitude 2 With this representation, the spherical surface 
is transformed into a rectangle on the plane, the meridians are transformed into parallel ver-
tical lines, and the parallels are stretched the more, the closer they are to the poles. Pole 
points turn into horizontal lines. Fig.5a and Fig.5b show an example of such a visualization of 

the variance boundareies of estimates of the polarization degree DNP() using formulas 
(2, 5), 6-point uniform plan  (m=3, n=2) and the same degree of the noise multiplicativity. 
The difference is only in the degree of polarization: a) P=1; b) P=0.5. 

 
a) 

 

b) 

 
Fig. 5. DNP(). Uniform plan (5), m=3, n=2; : а) P=1; b) P=0.5. 

 
From the maps of variance boundaries shown in Fig. 6, one can see the nature of the 

change DNP) for different combinations of m and n at a fixed degree of noise multipli-

cativity . 
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 Fig.6. DNP().Uniform plan (5), for different m and n 

at  P=1. 
 

Animation 1 illustrates in more detail the changes in the variance boundaries with an in-

crease in the number of measurement points at n=m and . 
 

In [2-3] based on the analysis of density distributions of information (see Fig.4) it is 

shown that at additive noise (=0) 6-point plan is the optimum. It is optimal in respect to the 
criterion of minimum of the normalized dispersion, and can be presented in the form of table 
1. Such a plan is heuristically proposed in the monograph [1] without the corresponding error 
analysis. 

 
Table 1. The optimal plan 6pO 

№ 0 1 2 3 4 5 

 0      

 0 0 0 0   
 
Let us consider the distribution of the variance boundary estimates of polarization de-

gree P on the Poincare sphere for 6-point optimum plan for 6pO (Fig.1), as well as for its 5-
point 5pO and 4-point 4pO shortened variants, under additive-multiplicative normal noise 

conditions. Imaging results of the visualization of DNP() are shown in figures 7-9 with 
the use of topographic scale (Fig.2 ) with the same normalization. 

Fig.7 shows a series of maps DNP() for the plan 6pO at different  For compari-
son, similar series of distributions for a uniform plan (5) with m=3, n=2 are shown in the 
same table in the second line under the code 6pU.  

 



6pO 

 
6pU 

 
 1 0.95 0.9 0.75 0.5 0 

Fig. 7. DNP(). 
 
In more detail the variance boundary change is illustrated in the dynamics by anima-

tions 2 and 3 while changes from 1 to 0. 

=0 

 
=1 

 
Fig. 8. DNP(). Plans 5pO. 

 

Fig. 8 presents the pictures of the distributions DNP() with and  for all of 6 
possible 5-point plans obtained by removing one point from the table. 1. The five-digit code 
here corresponds to the measurement point numbers. 

Using the presented figures one can understand the influence of various points of the 
optimal plan on the nature of the transformation of the patterns. Thus, replacing 4 to 5 leads 
to the conversion of paintings relative to the equator of the Poincare sphere; 2 to 3 – to con-

version relative to the Central Meridian; 0 to 1 – to shift along the equator in   

Fig. 9 shows the pattern for DNP() with and  for all 12 possible 4-point 
plans obtained by removing two points of the table. 1. The four-digit code here corresponds to 
the measurement point numbers. 
  



=0 

 
=1 

 
Fig. 9.  DNP(). Plans 4pO.  

 
In practice, along with the optimal 6-point plan, 4-point plans and a plan that can be 

expressed by the formula 3pO+s0 [5] are often used. The latter consists of three measure-
ments at the coordinates from the table 1 and one measurement of the total radiation intensi-
ty s0. 

 Fig. 10 shows patterns for DNP() when and  for all 8 possible 4-point 
plans 3pO+s0. The three-digit code here corresponds to the measurement point numbers 
from the table. 1. 

 

 

 
 

 
Рис. 10. DNP() 3pO+s0. 

 



The figures show that the areas with potentially minimal measurement errors change 
their position on the Poincare sphere depending on the code. In the presence of a priori in-
formation it allows to optimize the choice of points for measurements. 

5. The ranges of values of |DN| and DNP 
Ranges of |DN| and DNP values for the above plans are presented in table 2 at P=1 and 

different values . The 6pU cipher is used to denote a 6-point uniform plan (5) at m=3, 
n=2 (see Fig. 5a).   Table 3 gives the example of the plan 4pO showing how the boundaries 
of the ranges for |DN| and DNP depend on the degree of polarization P. 

 
Table 2. Value ranges |DN| and DNP (P=1). 
 |DN| DNP 

 0 0.75 1 0 0.75 1 

6pU 8.192103 675 - 1167 0 - 336 12 - 20 3.0 - 10.7 0 - 7.9 

6pO      

pO      

4pO      

3pO+s0      

 
Table 4. Ranges |DN| and DNP (4pO plan). 
 |DN| DNP 

Р 



0 0.75 1 0 0.75 1 

      

0.75      

      

 
The obtained results were verified by the method of numerical statistical experiment, in 

which the noise was modeled by a random number generator with normal additive-
multiplicative noise [6]. 

6. Conclusion  
In conclusion, we note that with the help of the developed technique based on the para-

metric information theory, it is possible to study the estimates of any polarization parame-
ters: azimuth, ellipticity, and others. The results of this study can be used to optimize signal 
processing algorithms and improve the efficiency of optoelectronic devices and systems of a 
wide profile: from laser Doppler flow velocity meters [7] and quantum optical guidance sys-
tems [8,9] to astronomical 3D interferometry systems [10,11]. 
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